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Operator Factorization of Scalar Wave
Equation in Frequency-Domian

Zhang-Ning Lu

Abstract— The partial differential operator factorizations of
the scalar wave equation in the time-domain were derived by
Engquist and Majda. A set of absorbing boundary conditions
were provided by using these equations. An alternative way to
derive these equations in the frequency-domain is shown. The
limitation and accuracy of the resulting one-way wave equations
may be easier to see from this derivation. Recently, the finite-
difference vector beam propagation method has been developed.
The possibility of the similar finite-difference method based on the
one-way wave equations derived by the operator factorization is
also discussed.

HE COMPLETE scalar wave equation in frequency-
domain in 3-D Cartesian coordinate may be written as
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A corresponding eigenvalue equation is given by
—kZ-kI-kI+k =0, )

where vector k = kzGy + kyay + k.a,. Eigenvalue equa-
tion (2) can be obtained from partial differential equation
(1) by transformation: j(3-/0z) — ks, j(8-/0y) — ky
and j(9-/8z) — k,. Eigenvalue equation (2) is consistent
with the dispersion relation obtained by using the method of
separation of varibles. Considering a wave propagating in the
+2z direction, component of propagation constant in the +z
direction, k., can be resolved from (2) as

k.= \/k% — (k2 +k2). 3)
If the waves satisfy the propagation condition, k? > (k2, +
k?,), the Taylor’s expansion can be used to expand (3). The
series can be truncated in any order: the first-order (\/ 1+z=
1+ O(2)),

k. = k; 4
the second-order (vI+z =1+ 3z + O(z?)),

[ @ e

and the third-order (vI+7 = 1+ 1z — 2% 4+ O(z?)),
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Now, we can obtain the approximate one-way wave equation
by conducting the inverse-transformation: k, — j(9-/0z),
ky — j(0-/0y) and k, — j(8-/0z), to the Taylor’s expan-
sions. We have then the first-order approximate wave equation

.0
J_g = ky; ¥
z
the second-order approximate wave equation
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and the third-order approximate wave equation
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The Pade’s third-order expansion (v/1+z = 1+ (z)/(2 +
z/2) + O(x?)) of the eigenvalue equation takes the form
ka2 o ckyy2
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The corresponding Pade’s third-order approximate wave equa-

tion is then given by
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Equations (7)—(9) and (11) agree with the results by using
the differential operator factorization (Engquist and Majda
[1]). From the assumption, &k > \/kmz + k.2, the propagation
waves are approximately governed by these one-way wave
equations, while the evenascent waves are excluded from
these equations. The well-posedness of these equations can
be checked by the standard procedure (Kreiss [3]). The results
agree with them obtained by Engquist and Majda [1] in the
time-domain. The one-way wave equations in the —z direction
can be derived similarly. The accuracy of the equations may
be looked by the following example.

Numerical Example: Parallel-Plate Waveguide

For a TE,, mode, except for the first-order equation the
solutions of the above approximate equations and exact wave
equation have the form
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where a is the distance between two plates. Inserting this
solution into (1), (8), (9), and (11), we have that: the exact
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full-wave solution has k.., = \/k2 — ((mw)/a)?, (here k; =
(mm)/a and k, = 0); and the corresponding Taylor's second-
order, third-order and Pade’s approximations are given by (5),
(6) and (10), respectively. These results are expected from
the derivation point of view. To give a numerical impression,
let kK = 100/m and a = 0.3m. The total number of the
guided modes are nine. For TE; mode, the relative errors of
the propagation constants for the second-order, third-order and
Pade’s are 1.5 x 1075, 7.7 x 1078 and 0.0, respectively. For
TE; mode, the corresponding errors are 1.3x 1072, 1.8x 1072
and 1.0 x 1073, For TE¢ mode, the corresponding errors are
0.66, 0.37, and 0.28. The approximations are better for the
lower-order modes. The Pade’s third-order approximation has
the most accurate results to the second-order and third-order
Taylor’s.

Recently, the finite-difference beam propagation methods
have been developed [2], [4]. The possibility of the similar
finite-difference method based on the higher order one-way
wave equations is then raised here. The first-order equation (7)
leads to the geometric optical ray-tracing solution, while the
Taylor’s third-order equation (9) is ill-posed [1]. The accuracy
of the second-order equation (8) is questionable from the above
example. Therefore, we may look for the finite-difference
schemes for the Pade’s third-order equation (11). The von
Neumann analysis may be adopted to analyze the stability
of the finite-difference schemes for (11). Unfortunately, the
explicit schemes are unconditionally unstable. The completely
implicit schemes are found unconditionally stable. But, the
solution of a strongly stable scheme suffers fast attenuation.
Therefore, a usable finite-difference scheme should be neutral-
stable or nonattenuative. The amplification factor of the Crank-
Nicolson scheme for (11) has been found to be unity. The
detailed assessment is beyond the scope of this letter.

To conclude the discussion, the other properties of the
higher-order one-way wave equations need to be addressed.
The second-order derivative in the expansion direction (+z
direction here) has been reduced to the first-order. There-
fore, the reflection in the opposite direction, —z direction,
is excluded in the higher order equations. To consider the
problem completely, the one-way wave equations in the —z
direction have to be employed. Fortunately, the higher order
one-way wave equations do include the reflection in the
other directions. Therefore, the boundary conditions for a
metal boundary having the tangential direction parallel to the
expansion direction are the same as the full wave equation’s,
i.e., Maxwell’s boundary conditions. If the metal boudary
is perpendicular to the +z direction, the equations in the
+z direction can be used for the incoming wave utill the
boundary, and then, the equations in the —z direction are
employed for the reflected wave with the initial value at the
boundary provided by the Maxwell’s boundary conditions. For
a general curved metal boundary, the coordinate rotation of
the expansion direction may be used. For optical dielectric
waveguides, the first-order absorbing or transparent boundary
condition [2] can be posed when a relative large computation
window is used.
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