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Operator Factorization of Scalar Wave

Equation in Frequency-Domian
Zhang-Ning Lu

Abstract— The partial differential operator factorization of
the scalar wave equation in the time-domain were derived by
Engquist and Majda. A set of absorbing boundary conditions

were provided by using these equations. An alternative way to

derive these equations in the frequency-domain is shown. The

limitation and accuracy of the resulting one-way wav~e equations
may be easier to see from thk derivation. Recently, the finite-

difference vector beam propagation method has been developed.
The possibility of the similar finite-difference method based on the

one-way wave equations derived by the operator factorization is
also discussed.

T HE COMPLETE scalar wave equation in frequency-

domain in 3-D Cartesian coordinate may be written as

(1)

A corresponding eigenvalue equation is given by

–k@:-k:+k 2=0, (2)

where vector ~ = kziiz + kviiv + k. 6Z. Eigenvalue equa-

tion (2) can be obtained from partial differential equation

(1) by transformation: j(~./ilz) ~ kz, .j(8./@) + kg

and j(8./t3z) ~ k.. Eigenvalue equation (2) is consistent

with the dispersion relation obtained by using the method of

separation of varibles. Considering a wave propagating in the

+Z direction, component of propagation constant in the +Z

direction, k,, can be resolved from (2) as

kz = ~k2 – (k; + kj). (3)

If the waves satisfy the propagation condition, k2 > (k2x +

k2y), the Taylor’s expansion can be used to expand (3). The

series can be truncated in any order: the first-order (~ =

1 + o(x)),

k, = k; (4)

the second-order (~ = 1 + *Z+ O(Z2)),

‘z=k{’-w)2+@)21};“)
and the third-order (~ = 1 + *Z – +$2 + O(Z3)),
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Now, we can obtain the approximate one-way wave equation

by conducting the inverse-transformation: kz --i j(d./i3a),

,kV -+ j(8./Oy) and ,kZ ~ j(d./8z), to the Taylor’s expan-

sions. We have then the first-order approximate wave equation

(7)

the second-order approximate wave equation

and the third-order approximate wave equation

The Pade’s third-order expansion (~ == 1 + (x)/(2’+
x/2) + O (X3)) of the eigenvalue equation takes the form

{
kz=k l–

(+)’ + (g)’

}

—. (lo)
2 – [(+)’ + (~)w’2

The corresponding Pade’s third-order approximate wave equa-

tion is then given by

Equations (7)–(9) and (11) agree with the results by using

the differential operator factorization (Engquist and Majda

[1]). From the assumption, k > kz2 + ky2, the propagation

waves are approximately governed by these one-way wave

equations, while the evenascent waves are excluded from

these equations. The well-posedness of these equations can

be checked by the standard procedure (Kreiss [3]). The results

agree with them obtained by Engquist and Nlajda [1] in the

time-domain. The one-way wave equations in the –Z direction

can be derived similarly. The accuracy of the equations may

be looked by the following example.

Numerical Example: Parallel-Plate Waveguide

For a TEm mode, except for the first-order equation the

solutions of the above approximate equations and exact wave

equation have the form

(12)

where a is the distance between two plates. Inserting this

solution into (1), (8), (9), and (11), we have that: the exact
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full-wave solution has k,z~ = ~ kz – ((m~)/a)2, (here kr =

(mm)/a and kg = O); and the corresponding Taylor’s second-

order, third-order and Pade’s approximations are given by (5),

(6) and (10), respectively. These results are expected from

the derivation point of view. To give a numerical impression,

let k = 100/m and a = 0.3m. The total number of the

guided modes are nine. For TE1 mode, the relative errors of

the propagation constants for the second-order, third-order and

Pade’s are 1.5 x 10–5, 7.7 x 10–8 and 0.0, respectively. For

TE5 mode, the corresponding errors are 1.3x 10-2, 1.8x 10-3

and 1.0 x 10–3. For TE9 mode, the corresponding errors are

0.66, 0.37, and 0.28. The approximations are better for the

lower-order modes. The Pade’s third-order approximation has

the most accurate results to the second-order and third-order

Taylor’s.

Recently, the finite-difference beam propagation methods

have been developed [2], [4]. The possibility of the similar

finite-difference method based on the higher order one-way

wave equations is then raised here. The first-order equation (7)

leads to the geometric optical ray-tracing solution, while the

Taylor’s third-order equation (9) is ill-posed [1]. The accuracy

of the second-order equation (8) is questionable from the above

example. Therefore, we may look for the finite-difference

schemes for the Pade’s third-order equation (11). The von

Neumann analysis may be adopted to analyze the stability

of the finite-difference schemes for (11). Unfortunately, the

explicit schemes are unconditionally unstable. The completely

implicit schemes are found unconditionally stable. But, the

solution of a strongly stable scheme suffers fast attenuation.

Therefore, a usable finite-difference scheme should be neutral-

stable or nonattenuative. The amplification factor of the Crank-

Nicolson scheme for (11) has been found to be unity. The

detailed assessment is beyond the scope of this letter.

To conclude the discussion, the other properties of the

higher-order one-way wave equations need to be addressed.

The second-order derivative in the expansion direction (+z

direction here) has been reduced to the first-order. There-

fore, the reflection in the opposite direction, –.z direction,

is excluded in the higher order equations. To consider the

problem completely, the one-way wave equations in the –z

direction have to be employed. Fortunately, the higher order

one-way wave equations do include the reflection in the

other directions. Therefore, the boundary conditions for a

metal boundary having the tangential direction parallel to the

expansion direction are the same as the full wave equation’s,

i.e., Maxwell’s boundary conditions. If the metal boudary

is perpendicular to the +Z direction, the equations in the

+Z direction can be used for the incoming wave utill the

boundary, and then, the equations in the –z direction are

employed for the reflected wave with the initial value at the

boundary provided by the Maxwell’s boundary conditions. For

a general curved metal boundary, the coordinate rotation of

the expansion direction may be used. For optical dielectric

waveguides, the first-order absorbing or transparent boundary

condition [2] can be posed when a relative large computation

window is used.
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